The Future of Math Education

Change in the practice of mathematics forces re-examination of mathematics education. Not just computers, but also new applications and new theories have significantly expanded the role of mathematics in science, business, and technology. Students who will live and work using computers as a routine tool need to learn a different mathematics than their ancestors. Standard school practice, rooted in traditions that are several centuries old, simply cannot prepare students adequately for the mathematical needs of the 21st century.

Shortcomings in the present record of mathematical education also provide strong forces for change. Indeed, because new developments build on fundamental principles, it is plausible, as many observers often suggest, that one should focus first on restoring strength to time-honored fundamentals before embarking on reforms based on changes in the contemporary practice of mathematics. Public support for strong basic curricula reinforces the wisdom of the past—that traditional school mathematics, if carefully taught and well learned, provides sound preparation both for the world of work and for advanced study in mathematically based fields.

The key issue for mathematics education is not whether to teach fundamentals but which fundamentals to teach and how to teach them. Changes in the practice of mathematics do alter the balance of priorities among the many topics that are important for numeracy. Changes in society, in technology, in schools—among others—will have great impact on what will be possible in school mathematics in the next century. All of these changes will affect the fundamentals of school mathematics.

Lynn Arthur Steen

ASCD Mathematics Curriculum Handbook 1998


Leave a Reply